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Deterministic lattice Lorentz gas: I. Chiral model 
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The Nethedands 

Received 31 July 1990 

Abstract. W e  study diffusion by using a specific type of cellular automaton, where 
partides move in a random environment of scatterers. The deterministic collision 
d e s ,  used in the model, pi% rise to certain difficulties related to non-ergodicity. 
The class of models. introduced by G- and Ortufio, also contains the model stud- 
ied by Gates. Previously developed theory, including the Boltmnmn approximation. 
the ring and repeatedring approximations and the effective medium approximation 
(EMA), is generalized for this model. The validity is further investigated using com- 
puter simulations. In the presence of reflecting scatterers EMA yields low-density 
results that show the breakdown of the Boltzmann equation, while they agree quam 
titatively with the low-density simulations. EMA also agrees with a phase transition 
that occurs for some parameter choices. 

1. Introduction 

In the context of the recent developments in discrete kinetic theory, lattice gases, 
cellular automata, etc [l-61 interesting features were found for the lattice Lorentz gas 
[7-91. The classical Lorentz gases, consisting of ballistically moving particles that 
collide with randomly placed scatterers, have been used extensively in the study of 
diffusion phenomena [lo-151. A variety of scatterer shapes have been considered to 
represent the scatterering rules, such as circles or spheres, diamonds, etc. The lattice 
version is defined as a random quenched array of scatterers that reside on the sites of 
a lattice. Ballistically moving particles move mutually independently along the lines 
of this lattice, and scatter off the scatterers. The unit of time is chosen such that 
at integer values of the time the particle is a t  a site. For the lattice model it was 
demonstrated that the discrete phase space for the velocities introduces strong quasi- 
onedimensional features [16-181. The molecular chaos assumption then no longer 
guarantees to account for all dominant contributions to diffusion, and the Boltzmann 
equation breaks down. 

The continuous Lorentz gas is a delerminisf ic  model: once the scatterer config- 
uration and initial position and velocity of the moving particle are known, its whole 
trajectory is determined. In the present paper we study some aspects of a lattice model 
with deterministic scattering rules. This is opposed to the s t ~ c h d i c  lattice Lorentz 
gas, where the collision rules are such that,  upon hitting an impurity, the moving par- 
ticle is transmitted, reflected or deflected with a certain probability. However, as the 
ultimate goal of kinetic theory is to derive (in the thermodynamic limit) irreversible 
behaviour from reversible microscopic equations of motion, one wishes to get rid of 
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788 G A van Velzen 

stochastic collision rules. In order to investigate the consequences, we discuss some 
deterministic lattice Lorentz gases, where the outcome of a collision depends on a f i r ed  
property of the scatterer. These collision properties are still to be chosen. 

T h e  chiral model, which we will discuss i n  this paper, was introduced by Gunn  
and Ortuiio 1191. I t  is typically formulated i n  two dimensions; that  is, it is not obvious 
how to generalize it for higher dimensionality. 

Some general remarks can be made concerning two-dimensional deterministic mod- 
els and the fundamental problems occurring here. Note tha t  by taking the Lorentz gas 
we obviate the usual difficulties inherent i n  two-dimensional hydrodynamics. We first 
note tha t ,  in the ensemble of scatterer configurations, the possible trajectories of the  
moving particle, for given initial position and velocity, are the same for stochastic and 
deterministic models as long as the trajectories do not return to points visited before. 
However, from general random walk theory i n  (,WO diniensions one concludes tha t  there 
is unit probability for a random walker to return to its origin, indicating tha t  returns 
should be  accounted for. The  return from a specified direction will thus also happen 
with unit probability, as the coordinat,ion number I of tlie lattice is finite. Once this 
happens, the  particle will follow its whole trajcct,ory a.gain: it is trapped in a closed 
orbit, and i t  does not contribute to diffusion, since the niean square displacement is 
bounded. The  question that remains is: how serious are t,he closed-orbit effects? How 
big is the influence of taking deterministic collision rules, instead of stochastic rules? 
Indeed, the simulations we performed show peculiar behaviour. We will come back to 
this in a later section. 

In previous papers we developed kinetic theory methods to deal with the stochastic 
Lorentz gas [9,20]. This theory can be generalized to models with more than one type 
of scatterer, which is in general the case for the present chiral model. This will be  done 
in the present paper. We also have t o  consider the symmetry group tha t  corresponds 
to the particular scattering rules. Furt.lier, we have performed computer simulations 
and  measured the diffusion coefficient. They wil l  also be described in this paper. 
We define here the (time dependent) diffusion coefficieiit D ( t )  to be proportional to 
the time derivative of the second moment of (.he distribution function for the moving 
particles (mean square displacement): D ( t )  E $&(i-?). In section 8 we will comment 
on the validity of this definition in tlie case that the distribution function is not 
Gaussian [21,22]. 

Besides a model with chiral collision rules, one can consider the mirror model [23], 
with scatterers tha t  can be viewed as mirrors oriented a t  an angle of * 4 5 O  with the 
axes. The  latter will he tlie snbject of the following paper. Another deterministic 
model, the so-called alternating lime model ["4], will not be considered, because this 
model has collision rules that  depend OII time (at  odd/eveir times the scattering is over 
&SOo), which is a fundamentally different problem and hard t,o deal with theoretically. 

For the chiral model the collision rules are siicli (.hat, t,lie velocity is rotated: a 
moving particle does not scatter off a scatterer ill a random direction, but in a direc- 
tion tha t  is fully determined by its direction of incidence and the type of scatterer: 
it is turned 90° clockwise or anticlockwise, or is reHected, depending on the type of 
scatterer. As argued before, th  scat,tering laws cause t,he moving particles to be 
trapped in closed orbits of various lengt,hs, of wliicli (.he distribution has been inves- 
tigated [26]. In the special ca,se of t,he Gat.es model [25], where the particle always 
turns to the left, this results in a phase t,ransit,ion: for high enough scatterer density 
the diffusion coefficient vanishes. This is seen i n  the simulations. Also the present 
theory yields a phase transition for the G a k s  model. The  closed orbits also imply tha t  
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phase space is split up in separate non-communicating parts, thus making ergodicity 
arguments inapplicable. Yet in practice one can attempt t o  circumvent this problem 
somewhat by averaging over a large enough number of different configurations of scat- 
terers and particle trajectories. Because these problems do not arise on the level of 
the  application of the theory, but do perhaps affect the relevance of the results, we 
will postpone remarks concerning these difficulties to section E, where the theory is 
compared with the simulations. 

We continue by giving a more detailed description of the model, also introducing 
some notation. A lattice site is either empty (with probability a = 1 - c) ,  or contains 
one of the three different types of scatterers: left-turners (with probability yL) right- 
turners (with probability yR) and reflectors (with probability @). The probabilities 
are normalized by 

a + p + yL + yfi = 1. (1.1) 

By introducing the concentration c = 1 - LY of occupied sites, we have also 

p + y L  + YR = c. (1.2) 

An exampie ofa particie trajectory is shown in figure 1. 

Figure 1. Chiral model with an example ofa trajectory, and the basis vectom 

An interesting aspect of the chiral model is that the phase diagram of the pa- 
rameters a ,  p, yL, yR and e is split up in separate regions (‘phases’) with different 
types of normal and abnormal diffusion. There are regions where all trajectories or 
orbits are localized to finite pieces of the lattice, or on ‘perimeters’ of islands [19]. 
i n  other regions the orbits extend over the macroscopic iattice. in the first type of 
regions diffusion does not exist, while i t i  the other regions diffusion could exist, but 
does not necessarily do so, as the second moment could grow slower than linear with 
time. The time dependence of the mean sqmre displacement depends strongly on the 
length distribution of the orbits. 

Assuming, for the time being, that the model is a good model for statistical me- 
chanics, the generai phase space arguments, given in  i7,G ,201 for ihe siochasiic iaitice 
Lorentz gas, apply here too. We estimated the phase space covered by the different 
events or particle trajectories, i.e. the order to which the events shown in figure 2 
contribute. The events are classified by the order in the density c of scatterers. The 
difference between the stochastic model and the determiniistic model enters through, 
for example, the orbiting collision sequences of figure 2 ( c ) :  i n  a deterministic model 
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the particle will travel infiiiitely many times t.hroug11 this orbit, while with stochastic 
collision rules [9] the 'presence' of tlic moving particle on this hajectory decays expo- 
nentially. Apart from obvious modificalions, the general formalism given in [9,20] is 
assumed to be valid here too. In  the neat sections, we wi l l  discuss these modifications 
and we will calculate explicit results. We will write down the Chapman-Kolmogorov 
equation for this model and consider t,he symmetry group of the collision operators. 
The generalization of the Boltzmann approximation, the ring and repeated-ring ap- 
proximations (and the corresponding self-consistent versions) and the full effective 
medium approximation (EMA) will be explained. In the final section, we present com- 
puter simulation data and compare them with these t,heoretical results. 

2. Chapman-Kolmogorov eqiiation 

As already noted in the introduction, t,lie chiral model is defined in two dimensions. 
The Chapman-Kolmogorov equation can be writt,en dowi  if we assign to each of the 

Of these variables, each can take on the values 0 or 1, according to the probabilities 
in ( l . l ) ,  snbject to the constraint an + 17, + 7," + y: = 1; thus, for given n, only one 
of them is different from zero. Let p ( n , i ,  1 )  be the probahility in a given configuration 
of scatterers that a t  the integer-valued t.ime t the moving part,icle is a t  site n and 
arrives there with 'velocity' i (i.e. comes from lattice site n - e,). Here velocity 
variables, denoted by labels i , j , , . .  ( i , j  = 1,2.3,4) ,  refer respectively to  the lattice 
directions elre2,e3(= -e1),e4(= -ez). We furtl~er use the convention that Greek 
labels (a,@ = 1 , 2 )  denote Cartesian componeot.s of two-dimensional vectors. The CI< 
equation is then given by (271 

N lattice sites, labelled by n = (ns,n,,), the st,ochast,ic variables a,, P,, ri and -i, R . 

where the transition matrices in the four-diinensional velocity space (see figure 1) are 
given by 

1 0 0 0  0 0 1 0  

0 0 1 0  
0 0 0 1  0 1 0 0  

w A = ~ =  ( O  O )  I ~ J I ~ =  (' 1 0 0 0  ') 

/ o  0 0 1 \  / o  1 0 o \  

2 As expected, (WL)' = WB and I.VLIVR = CVRWL = 1. The distribution 
function for the moving particle is ( p ( n ,  i ,  t ) ) ,  where (. . .) denotes the quenched average 
over the configuration of scatterers. i.e. an average over all c ~ , @ , , , ~ " , T ~  subject to  

(WR) 
L R  
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4 0111 e) Oil ,  

Figure 2. Examples of collision sequences thal contribute to order 1 or to order C. 

the constraint given above. Formally, (2 .1)  can be written in 4-vector and 4N-matrix 
nota,tion [Q]: 

p(t + 1) = s-y 1 + I<)p ( t )  

S .  w.m) . = S  nm & . . = A  I) n+e.,m s.. .  11 (2.4) 

(2.3) 

with the same streaming operator S defined as 
.~ 

We will often suppress the explicit notation of labels of the matrices that denote the 
velocity components. The collision operator I< is written in the coordinate represen- 
tation as 

IC,, = Kndnm ( 2 . 5 )  

where IC, is constructed from the different types of scatterers and their densities as 
follows: 

K ,  = p,TB + r;TL + yrTR (2.6) 

..here T X  E wx - 1, with the w defi!!ed !!I (2.2). Thi. co!!!sion operatnr rep!2ces 
K ,  = c,T, which is the one for the stochastic model, where c, is the stochastic 
variable indicating the presence or absence of a scatterer at site n .  

Performing 
the Laplace transform on the conditional probabilities P ( t ) ,  satisfying P(0)  = 1 or 
P . 

Now we repeat from [9,20] the formu1a.e that are relevant here. 

. = ~5~~6,,,,, we obtain the propagator n v v  

m 

q 2 j  = C(i + z ) - l ( ~ ( t ) )  = ([(I + 3)s- 1 - 1 ~ 1 - l )  (2.7) 
1=1 

where the brackets also indicate the ensemble average. Later we will use the Fourier 
transform, which for translation invariant matrices reduces to 

with the inverse transform 
. "  1 

Ani,mj = - C e""Aij(q) E 
qEIBZ 
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The summation index n runs over the N lattice sites. The q are reciprocal lattice 
vectors, located in the first Brillouin zone (187,). In t.he thermodynamic limit ( N  - 
CO), the q sum may be replaced by an  integral. The integratioii symbol stands for 

(2.10) 

The velocity autocorrelation function, which will finally lead us to the diffusion 
coefficient, is given by 

where +(O) = 112. The index (Y labels the Cartesian components of the vectors. We 
introduced a vector notation for the velocities, where [V') aiid IV,) are column vectors 
with components (1,0,-1,0) and (O,l ,O,-l) ,  respectively, on the basis {e l ,  e z ,  e3, 
e4}definedinfigure 1. Together with ~1)=(l,l,l,l)and~2V'-l)=(l,-l,l,-l) 
they represent a basis of the four-dimensional velocity space. This hasis diagonalizes 
the collision operators in the stochastic model, which have the full  cubic symmetry. 
This is not the case for the present chiral model, as we will see later. For more details 
on cubic symmetric matrices we refer to [9], appendix 1. 

The Green-Kubo formula for the difhsion coefficient is derived from the second 
moment of the probability distribution. It can equivalently be expressed in the velocity 
autocorrelation function (2.11). For the square Iabtice we have [9,22,28] 

m 

D = x4(t) - :. 
t=o 

The Laplace transform of the VACF is: 

(2.12) 

(2.13) 

The static diffusion coefficient is then readily written as: 

D = O(z = 0) - 1 (2.14) 

This will be the quantity that we will calculate i n  this paper for the chiral model. In 
previous papers we described several approximatioil schemes that try to deal with the 
disorder represented by the stochastic matrix IC,,,. We will generalize them here. The 
basic ingredient is the ring integral or ring matrix, which is essentially the probability 
of return of the moving particle to a site it has already visited before. Returns ('rings') 
introduce correlations between collisions, and arc thus to be considered as corrections 
to the results given by the Boltzmaun equation. The ring integral is written as 

4 '  
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Here, G denotes the propagator in some approxiinat.ion where the disorder is smoothed 
ou t  and we have a uniform system. G ( q ,  z )  is its Fourier transform (2.8) and exp(iqV) 
is the  Fourier transform of the free streaming operat.or S of (2 .4) ,  see (2.8). We will 
consider several approximations, which also affect t,he form of the collision operator, 
and may induce a frequency dependence. For this reason we denoted it as K ’ ( z ) .  
T h e  ring integral will be studied in detail in section 7. Later we will discuss the 
approximations in more detail, bu t  it is convenient t,o first introduce a basis of velocity 
space that diagonalizes the collision operator I<, arid thereby all the other operators. 

3. Symmetries 

For the subsequent analysis it is convenient t o  diagonalize the matrices of the operators 
we need. The  basis on which this happens is related to the symmetry of the matrices 
we use. Using the matrices (2.2) which form a Iiasis, any general rotation-symmetric 
matrix can be written as 

H = a1 + bWB + cLWL + cRMll‘. (3 .1)  

Using the representation introduced below (2.11),  one can easily verify that IV,) and 
IVY) are not eigenvectors of H .  This reflects the difrerence with t,he full cubic symmetry 
of the  stochastic model. However, as the matrices i n  (2.2) commut,e, we still can find 
a set of eigenvectors that  span the velocity space, i.e. we call diagonalize the general 
matrix H .  One can verify tha t  this is realized by choosing the basis {lV+), IV-)], 
which is expressed in {IVJ, IVY)) as 

IVt) = IVZ) + ivy) I\’+) = IV,) - iIV.). (3.2) 

I+,) = 11) M I )  = IV+) = I\/-) I$,) = \I<? - VY?) (3.3) 

(a(V)lb(V)) - x a * ( e i ) b ( e , ) .  (3.4) 

where IV,) and IVY) are defined below (2.11). Nest we introduce eigenvectors 

which are normalized with respect to the (Ileriiiitiaii) inner product 

1 

4 ,  

T h e  eigenvalues of (3.1) corresponding to (3 .3)  are: 

h, = a + b + cL + cR 
h , = h t = a - b - i c  L + i cR  

L . ri h 2 = h - = a - b + i c  - I C  

h , = a + b - c  - c .  L R  

(3 .5)  

Using this, the collision operators T’ G LV” - 1 are seeii t,o have the following 
eigenvalues (see (2.2)): 

t 7 Z - 2  t F z - 1 - i  t : = - l + i  
t F = - 2  t :=- l+ i  t F z - 1 - i  
i : =  0 t ,L=-2  1,” = -2. 
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Using this basis of eigenvectors, the propagat.or (2.7) and t,he ring operator (2.15) 
are diagonalized, and the expression for the diffusion coelfcient (essentially the z = 0 
value of the Laplace transform of the VACF) is given by: 

r is the Fourier transform of the propagator (2.7). We recall that the brackets also 
imply an  average over the randomness preseut in the stochL3tic matrix Ii, After 
appropriate averaging, the (vector) eigenvalues of an elfective (translation symmetric) 
collision matrix Ii are -XI = -A, and - A 2  = - A _ .  I n  the next sections we will 
discuss several ways of approximating these eigenvalues and thus the value for the 
diffusion coefficient. 

4. Boltzmann approximation 

The most straightforward approximation is to assume molecular chaos [9]. This means 
that we do not account for any correlation between t.lie collisions of the moving particle 
with scatterers. I t  is equivalent to deciding wliet,lier there is a scatterer every time a 
site is encountered, using the probabilit,ies e, 8, yL aiid yR. 

Explicitly, we will have for the collisioii operator, occurring in  (2.7), for every site 
n: 

(4.1) 
K O  = ( I C )  .= p P  + T L T L  + y R R  T 

The eigenvalues A+ and A- are seen to be: 

A, = A Y  = -ptF - y"tY - 7%: = 2/3 + yL + yR + i(yL - rR). 

For the diffusion coefficient (3.7) we need twice t,he real part of A;', yielding 

(4.2) 

(4.3) 
1 
4 '  

- -  1 2p-t yL + yR Do - 
4 zp2 + ZP(yL + yR) + yL? + 7"2 

Recall that the probability a occurs here imlilic,illy t,lirough the normalization (1.1). 
For the case (p  = 0 , yR = yL = i c )  this yields D" = i c -  i, which is the same as for 
the Boltzmann approximation for the stochastic model with only deflections, and the 
Ruijgrokxohen model with equal amounts of right- and left-oriented mirrors [23]. 

Using the Boltzmann propagator Go, i.e. (2.7) wit,li Ii' replaced by K O ,  we can 
write down a systematic expansion of the exact propagator r i n  terms of Boltzmann 
propagators Go. In [20] we discussed that the Dyson equation 

r = GO + GOBr = ( G O - '  - E)-' (4.4) 

generates all terms in such an expansion. 111 this equation, B denotes the set of 
collision (or self-energy) diagrams, ahicli account, for correlations. Jn the Boltzmann 
approximation, the higher-order terms vanisli, i.e. B = 0, leaving GO. In  the following 
we discuss several approximations that resum subsets of the self-energy diagrams. 
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5. Ring and r e p e a t e d - r i n g  approxiiliation 

A ring event corresponds to a return of the moving particle to a site it has already 
visited before. This site can he empty, or it can be occupied by a scatterer. For 
the chiral model, we further have t o  distinguish between different types of scatterers 
tha t  can be at the site. In a quenched configuration of scatterers, the particle will, of 
course, upon return to the  same site, encouiiter tlie same scatterer it hit before. A 
repeated-ring collision sequence will tliiis be one of 

T B ( R T ~ ~  TL(RTLf T ~ ( R T ~ ) '  (5.1) 
with f! = 0,1,2,. . ., and not,  for instance 

T B  RTL RTL RTR RTB R T n  RTB RTL. 
R is the  ring operator, cf (2.15). Accordingly, the  ring approximation (RA) i s  given 
by [20] ICRA = I P  +BE,  with 

Here Ro = Ra(r) the simple ring i i i t egml  of the  Boltzmann propagator, i.e. (2.15) 
with K ' ( r )  replaced by K O  of (4.1). The riiig integral is calculated in section 7.  
Analogously, the repeated-ring approximat,ion (TiRA), accounting for infinitely many 
returns, is written as 
B,, = p (T B O B  R T + TB(R"TB)* + TB(R0TB)3 + . ..) 

BRA = pTBRnTB + yLTLRoTL + yRTRRnTR. (5.2) 

+ yL (TLRnTL + TL(R0TL)' + TL(RnTL)3 + . . .) 
+ Y~ (TRROTR + TR(ROTR)' + T R ( R O T R ) ~  + . . .) 

y L ~ L ~ O ~ L ( l  - ROTL)-' + y K ~ R ~ O y , l l ( ]  - ROTR)-', 

= pTBRoTB(l - ROTB)-'+ 

(5.3) 
Here it is in order to remark tliat in the cliiral IiiodeI tlicre are a t  most four (the coor- 
dination number) returns possible wit.11 int~ermediitt,e uiicorrelated collision sequences. 
Every return after this results i n  orbitiiig collision sequeiices such as depicted in fig- 
ure 2(e). We will come back to this point iii the discussion, where for a specific model 
we look at the difference between a finite number of returns and infinitely many re- 
turns. 

The  self-consistent ring and repeated-ring forinrilat,ioiis (SRA and SRRA, respec- 
tively) are straightforwardly obtained iising an it,erat,ion procedure: the ring integral 
R' is replaced by R(:), i.e. the ring int,egral over an effcctive propagator with an ef- 
fective collision operator lie = c F  = ICo + B .  Irere, B is given for the SRA and SRRA 
in ( 5 . 2 )  and (5.3), respect,ively, w i t h  R"(.-) - R ( z ) .  So tlie collision operator depends 
on the ring integral. We write [,lie effective collisioii operalor i i i  the form c y ( : )  (with 
c the  density of scatterers, irrespect,ive of t,lie t,ype) to remain in contact with the 
notation i n  [9,20]. The z = 0 value will be needed for tlie dilfusioii coefficient. 

Note that for the chiral model w e  do not have a n  exact solution for the case that 
the lattice is completely filled wkli sca(,t,erers. T l i e  reason is that it does not reduce 
to a standard (correlated) random walk, as we st,ill have the disorder of diflerent 
scatterers. Consequently, we caiiriol write down the Iiigb-density equivalent of the 
ring and repeated-ring approximatioils. The st,ocliastic Lorentz gas of [9,20] has only 
one type of scatterer, so the tilled lattice has no  disorder and an enact solution can be 
obtained. 
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6. Effective medium approximatioil 

Finally, we discuss the application to this model of the effective medium approxima- 
tion, which has proved to be successful in the theory of ra,ndom resistor networks 
[29] and hopping models [30-341. The approximation can be obtained by resumming 
the returns to the same site using an effective propagator to account for a uniform 
effective medium, followed hy the requirement of a vanishing first-order correction in 
a perturbation expansion in  terms of this eiieciive medium propagator. This require- 
ment determines the effective collision operator. I n  [20] we analysed which subset of 
diagrams out of the set of collision diagrams of t,he exact expansion are accounted 
for by this approximation. In summary, the EMA is such that it accounts for all cor- 
relations which refer to the same site (ring-type correlations), followed by nesting of 
these repeated-ring diagrams. The weights are such that the description is in itself 
consistent. Events that are definitely not accounted for refer to crossing events be- 
tween scatterers a t  different sites. The elTecrive medium approximation having the 
characteristics of a ring approximation ineatis that the application to the chiral model 
i s  only more complicattd in tlie sense that we have different types ofscatterers: we 
have to sum four terms. The effective medium condit~ioii is [0,20] 

I r.- -'pe \ 
I." - C L  

( 1 - R(K, - CT')) = O 

where the collision operator is now of the form (2.6),  and cTe = lie is the effective 
operator (see end of preceding seclion). The brackets indicat,e an average over the 
scatterer configuration, here ouly for one site. Using tlie probabilities with which 
the different scatterers occur, we can write the BMA colldilio71 for the chiral model 
explicitly as 

Here, R is the ring operator for the effect,ive medium (calculated in section 7), account- 
ing for returns of the moving part,icle to the same scatterer after travelling through 
an 'effective mixture' of scatterers and empty sites. III this effective mixture, the col- 
lisions with the scatterers (and 'virtoal collisions' wit.li empty sites) are assumed to 
he uncorrelated. Note that the probabilities 0 ,  0, yL and yrl, occurring in (6.2), are 
normalized by (1.1). Corrections to the EMA [9,20] involve 'crossings' between two 
different sites, i.e. non-ring diagrams. which are far more complicated to incorporate 
in the theory [35-371. Intuitively the E M A  acconnt,~ for the nested ring diagrams in  
the same way as i t  does in the stochastic case. Also here it, is possible, using a dia- 
grammatic analysis (cf [20]). to deteriniiie t,lte rveigIit,s t h t  tlie riested ring diagrams 
obtain. However, we did not do this. The Ehlh eqnat,ion we oht,ain here for the chiral 
model is not as easily solved as the EhlA eqtlat,ioli for Llie stocIinqt,ic model. To explain 
this we first note that,  due to the diagonalizal,iotl (see sect.ioii 3),  (6.2) can rcadily he 
seen to be the equation for the e l g e n u n l r r e s  of t,he effective collisionoperator. For every 
eigenvalue, (6 .2)  contains fonr terms. I n  general t,Iiis leaves a fourt.h-order equation to 
solve. Only in some special cases, like.t.llc Gates tnodcl ( p  = yL = 0, orp  = yR = O ) ,  
do simplifications OCCUK.  An additional diflictilt,y is t.hat the eigeiivaloes are complex 
numbers, expressing the chiral properbies of the scat,lerers. 
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The  different approximations discussed in this and preceding sections are obtained 
by making specific choices for the  collision operator, which we  will denote by A,  having 
eigenvalues A t .  As we have diagonalized the niatrices, the operator expressions (5.2), 
(5.3) and (6.2) directly yield the  expressious for A, in terms of the eigenvalues of the 
collision operators TL ,  TR and TB, and the ring integral R. For the EMA we have to 
solve the coupled equations (7.10) and (6.2), where t.he latter yields the eigenvalues 
A, of A = -cTe, that  can be substituted in (7.10) to calculate the corresponding 
eigenvalues of the  ring operator. 

The  diffusion coefficient (3.7) can be  calculated usiirg the z = 0 values of the vector 
eigenvalues 1: = -A,/c = -A+/c and t ;  = -X,/c = -A-/c of the effective collision 
operator Te.  The values for the A +  depend on the approximation used: Boltzmann, 
(self-consistent) ring or repeated-ring approximation, or EMA. 

Finally, we note tha t  effective densities of the different types of scatterers can be 
calculated from the final (eigen)values ct; of cTe, in any of the approximations. From 
the matrix equation 

cTe = p'TB + yLeTL + yneTR (6.3) 

we obtain 

7. Ring integral 

For the calculation of the transition probabilities, (i.e. the effective densities of the 
different scatterers) in the  various approxiimtions, we restrict ourselves to the z = 0 
case, as we aim for the static diffusion coefficient. We evaluate the eigenvalues of the 
ring operator R, given by the integral (2.15): 

rt = (+eIRI+e) = / ( + c ~ ~ t )  (7.1) 
q 

with A,  satisfying 

(e," - 1 - c F )  1.4,) = I.",). 

B,,, = ( $ t , l  (e'q" - I ) - ~  I+,) 

(7.2) 

We define the matrix elements [O] Be,, hg 

(7.3) 

and we decompose the effective collision mat,rix -cTe = A int,o project,ion operators 
Pc on the eigenspaces (3.3) of the rot,at,ioii syminet.ric operator: 

- cTe=A=X1P,+X?P?+X3P~ (7.4) 
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where 

p, = I+c)(+cl. (7.5) 

The  values or expressions tha t  we will substitute for the A will correspond to the actual 
approximation (RA, RRA, SRA, SRRA or EhfA) tha t  we wish to study. T h e  equations 
for the components of the vector A are then 

A3Di3 

) ((@llAf.)) (h) 

1 + AlB11 AZB,, 
'lB21 1 + A 2 B 2 2  '3'23 ( $ 2 1 4 )  = 4, . (7.6) 
'1 '31 + (&lAt)  

The  matrix elements E,,, are  given by: 

E,, = E,, = E,, = -4 
E,, = -El,  = -ih, + h, 

sinq,/(l - cosq,) .  T h e  ( $ l p r / A f )  can now he calculated. Defining f: = 

E,, = E?, = 0 

E,, = -B& = -ih, - h,  
(7.7) 

with h,  E 
2h2, and after some algebra, the  result can he wribtei~ in the form 

for e = 1 , 2 , 3 .  The  coefficients A,, E,, E and F are given by: 

A 1 -  - - L ( 1 -  2 L A  2 , ) ( I -  9 3 )  

A2 = -? ( I  - ?A,)(l - LA ) 
E,  = & A 3 ( 1  -A , )  
E? = & A 3 ( 1  - A,) 

1 1 

(7.9) 
2 3  

A 3 -  - - L ( l -  2 4A1)(l - $ A 2 ,  
E = (1 - ;A,)(l - +A,)(] - :A3) 

B3 = & ( A ,  + A, - A,A,) 
F = $,(A, + A 2  - A,A,). 

This integral has been calculated analytically iii [9], appendix 2. We repeat the  result 

(7.10) 

with 

6[1+ ( 2 / ~ )  tan-' i ( 6 - I  - h ) ]  for 6 2  > 0 
for 6' = -q2  < 0. 

(7.11) 
~ 1 1 1 I l ( V  + I ) / (?]  - 1) 

The quantity 6 is defiued by 6' = F / ( E  - J.'j. \Ye irot,e, from the fact t ha t  A ,  and A, 
are complex conjugate, we have tha t  E aiid F are real numbers, and .4, and E,  are 
the complex conjugates of A ,  and E,, respectively. The  consequence is tha t  r, and r, 
are complex conjugat,e and consequently the next values of A,  and A? in an  iteration 
procedure (for a self-consistent evaluatioiij. This will give a real number for the 
diffusion coefficient, as one would expect. As a clieck of the expressions obtained here, 
we can set A, equal to A, in (7.9), i.e. assuming degeneracy of the vector eigenvalue. 
This, expectedly, leads to the same expression as obt,ained i n  [9], where the vector 
eigenvalue is degenerate. 
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8. Results and discuss ion  

T h e  kinetic theory tha t  was developed for the  stochastic lattice Lorentz gas (see 
[9, ZOJ), has been applied to the chiral model, which is deterministic and  has chiral 
collision rules. Here we evaluate the static diffusion coefficient. For an  investigation of 
the time dependence of the diiiusion coeKcient and velocity autocorreiation function 
(VACF) in, for instance, the EMA, we refer t o  [33,34]; for the stochastic lattice Lorentz 
gas the long-time tails for the  VACF were analysed in [41]. Explicit results for the 
effective medium approximation can be  obt,ained by using numerical techniques for 
carrying out the iteration procedure prescribed by t,he coupled set of equations (6.2) 
and (7.10). As we are looking for the  static propert.ies, we restrict ourselves to the 
z = 0 case, corresponding to i - ca. i i l e  procedure is more invoived ihan for ihe 
stochastic model. For the  latter,  t,he problem reduces to the search for fixed points in 
a mapping of the two-dimensional paranleter space { A v ,  A t }  onto itself, where A, and 
A, are the eigenvalues for the vector and tensor eigenspaces [9]. In the present case, 
we have three independent parameters: tlie complex conjugate A, and A ? ,  and a real 
number A, (see section 7). One could imagine 1.lrat I.he st.ructure of the  function in 
LMS parariiacr s p a ~ c ,  wi i i c i i  wc uu i i u ~  I\U(JW ti p i t o i ~ z ,  IS uoi necessarily such that  one 
will indeed find relevant fixed points. Moreover, the E ~ { A  equation ( G . 2 )  (to be solved 
at every intermediate iteration step) has four terms, as we distinguish between empty 
sites and three types of scat,terers. Conseqiient,ly, the equation for the eigenvalues 
A, will in general he fourth order, and it might l ie  a prob lem to find the physically 
relevant branch of tlie solutioii. For t.liese reasoiis, it is not very likely that we will 

In order t o  find the physically relevant braucli of the solutions, one should oh- 
viously choose the  correct starting values. For the stochastic model, the outcome 
was insensitive to whether we take the Boltzinanii valne or a value that is a fac- 
tor five different from it.  T o  attack problems of convergence for the present case, 
we also take advantage of the knowledge of t.lie result of a slightly different c value; 
thz? is, while performi!ig the ca!cn!at,io!:s for 1 sequence of incre?zing c ua!ues, o ~ e  
could start  the iterations for a certain c with a previous result. Unfortunately, even 
this does not guarantee solutions for some paramet,er choices. For example, the set 
(p  = yL = -,R = 5.) or sets wit,li larger i j ,  values do not, seem to yield convergence, 
neither in the  EMA nor in t l ie ot,lier self-colisistent approxiinations SRA and SRRA. 
For the case ( p  = 0.33c,yL = yR = 0 . 3 3 5 ~ )  convergence is still obtained. The  results 
for cD(r) ,  however, are of the order of 0.1 compared wit,h 
the  other models we will discuss later. This may indicate tha t  the threshold value p, 
above which no  diffusion exists, is actually lower t,liaii t,lie theoret,ical upper hound [lU] 
given by the two-dimensional site percolatioil tlireshold: p = cp = 0.41. Obviously, 
the  explanation for t,his is tha t  cliiral scat,t.erers may block an area. 

In the following we present the results for some t,ypical paranleter sets for which 
we were able t o  obtain results. N0t.e t,liat, the ring aiid repeat,ed-ring approximation 
(and of course the Boltzmann aplbroxima1,ioii) are st.raiglitforward calculations, which 
can be carried out for any set of paranre1,er.j. 

For some models, we also performed coinpii1,cr simulations, using typically several 
thousands of moving particles moviiig in a latt.ice or size up to 1000x1000 sites, a 
fraction of which was randomly filled with scat,t,erers. 

-, 

. . .  1 1 ~ 1 - ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~  ~ -... ... L.IL ~~~~ , - ~ ~ ~ I  I ~ ~ ~ . . .  

f i "A  rnl.,t;nn" CA" r"la..", ,.l,n;,-s -f n.r".na+n." 
Ill.., Y " l " Y l " l l "  I", L V L I  y C l L V l r r  "I I " L L " " 1 C Y " ~ .  

whicli is r a t h r  small; 
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8.1. The Gales model 

A special case of the chiral model is t,lie Gates model [%I. It  consists of randomly 
placed scatterers of only one lype: either left-turners or right-turners. This model 
clearly shows a phase transition from extended to localized orbits or trajectories when 
the model parameters are varied: at a high enough density of scatterers, the moving 
particles can not diffuse away, and  will soon be  trapped i n  closed orbits. The  mean 
square displacemeni is ihus finite, and diifusion does not exist. Tiis property of 
the model, caused by the chiral nature of the scatt,erers, is not reproduced by the 
Boltzmann equation, as it is strongly related to correlatioiis between collisions. Indeed, 
as one can verify from (4.3), the Boltzmann diffusion coefficient goes to zero only in 
the high-density limit. 

For the Gates model we calculated t,he diffusion coefficient in all approximations 
derived in this paper. The fact that there is oniy one type of scatterer facilitates 
the computation of the EMA values, for the EhlA equation (6.2) is only a quadratic 
equation instead of a quartic. For this model t,he lo\r.-density Boltzmann result is not 
modified, because there are no  direct, reflections (i.e. f i  = 0). 

In figure 3 we plotted the  results of tlie approximations, together with computer 
simulations for the (time-dependent) diffusion coeficicnt at the indicated times. From 

later we will comment further on this plienomenon. The  EMA shows a phase transition 
at y = c Y 0.67. The  ring approxiniat,ion (RA)  also shows a phase transition, while the 
repeated-ring approximation (RRA) i s  even worse than (,lie Bolt,zmann approximation. 
At  this point i t  is interesting to come back t,o tlie earlier remark t,liat one can return 
at most four times to the same scatterer wit,li intermediate uncorrelated collisions. As 
I.IP hQlm rnnc;,inr9h!a rl;an-anal,r.r hat.. .,,, $1.- ..:,,- 9.-..,.n..;.-2+;n,, >..,I +ha .,,,,+,A- ,.- I.U.C. U ~ Y I I I I Y L L Y V l r  Y'"LLL),L".bCJ " L Y l l r r l l  l , l lL ,,.,e "~. '~, ."".111L'Y1".~ <>,," Y..C ' C y C Y u L Y -  

ring approximation, the questioii arises what an m-t.imes-repeated ring approximation 
would give, i.e. substituting the collision operators by T + TROT -1- . . . + T(R'T)'", 
where T stands for TL or T R .  T h e  resrilt,s are displayed i n  figure 4 .  They show tha t  
apparently the successive summation of more and niore terins does not converge in 
a decent way. There may exist large difrerences bet,meen tlie approximations with 

obtained with the expression T(l  - RT)-l ,  hi i f  07liy up fo c = y z 0.69. Apparently 
the  expression for t,he infinite sum exceeds the radius of convergence of tlie series. 
In some way the EMA resums all these diagrams will1 weights that  are such tha t  
the divergences of individual terms are suppressed and the  qualit,ative feature of the 
transition is recovered. This is completely i i i  the spirit of our analysis in [20]. 

describe the simulations. Similar results were obtained before i n  [20]. No substantial 
difference was observed here upon t,akiiig a finite iiiiniber of rings as described above. 

I t  seems tha t  here also, out of the collection of approximations, the EMA is the 
best one; this is in accordance with what we fouiid i n  [S.20]. Also i n  agreement with 
the  results of [20] is the fact that. the self-consistent ring lype curves bend off strongly 
from the EMA and become unsolvable very sooni i.e. a t  rather low density. 

In the simulations for the  Gates niodel, plot.!,ed in figure 3, we extracted the  dif- 
fusion coefficient from runs with dilferent numbers of rime steps. For more extensive 
simulations we refer to [26]. There it. is found bhat tlie transition from extended to 
localized orbits is at c = 7 0 5 i S  wlrere y st,ands for eit,lier yR or yL, by symmetry. 
However, as we see in figure 3, it may be such that even below t,liis critical concentra- 

+L..c"..."..:+ : " ^ I ^ ^ _  4 L - b  *LA - ^  ,-,:.. *:-- .. I.-" ^ L-l.1.. ..̂ * ..-A Le-.. ----L-J. 
b u r  "6Y'C I"  I" LLG(11 Y I I a I u  Y11.z N J l l l l J Y V L ~ I L  Y l l l K  'O"6'  l l 0 i J  !'L""O",J .,"U J C h  "GCII ,caL,,5", 

different .&es Q:l!y fnr very !...:ge (260 01 3fifi) res:!!? coincides wit.!? ?h.t 

The self-cnnsistent ca!cu!a!,ions for !,!?e &!e? !!lode! spell? to fa!! off too quick!y t,n 
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Figure 3. Various approximations lor the G a l e  model. together with simulations. 
Simulation results for several  value^ of time t .  
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Figure 4. Comparisori of repeated-ring npprosimatioos for the Gates model. m = 
2,4,8.12.16,20. 

tion diffusion is not well defined: t,he t = 1000 sininlation data lie below the t = 200 
simulation data. The diffusion coefficient is calculated from the slope of the mean 
square displacement. In [26] even more peculiar behaviour is reported, namely that 
the diffusion coefficient (measured at a certain time t ,  as the mean square displacement 
is not really linear) is larger for y = c 0.48 than for y = c 2 0.45. However, if we 
naively restrict ourselves to the results from rather short simulations, the present work 
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is in qualitative agreement with the esperiment,s. Tile discrepancy of the prediction 
of the threshold (y = 0.67), with respect to the niimerical results, is comparable to  
the prediction of the percolation threshold for the three-dimensional bond percolation 
model by the original EMA theory: cp = $, as compared wit,li simulation results that 
indicate cp E 0.75 [29,34,37]. 

8.2. Other models 

More challenging calculations for tile chirai Inodd are those that include more types 
of scatterers. The first case we will discuss is t,liat, with left- and right-turners, but no 
backscatterers, i.e. we take P = 0. In the past, this version has received attention in 
numericalstudies ofcritical exponents [38,39]. The model with yL = -,R = $c has the 
same Boltzmann approximation for the diffusion coefficient as the stochastic model [9] 
with y = f. The EMA, and also the ring a,nd repeat,ed-ring approximation, are about 
the same as the Boitzmann approximation. We stress that this statement hoids for 
the vectorial eigenvalues A+ and vi enl,ering i n  tlie V.kCF, but not necessarily for the 
tensor eigenvalues A, and 1’3 (see also [9]); t,he lat,ter do not enter directly into the 
diffusion coefficient, but do play a role i n  the iterat,ion of t,lie equa,tions for the SRA, 
SRRA and EMA. 

The results are plotted in figure 5, t,oget,lier with some simulations. For low den- 
sities we have agreement, hut for higher densities we fiud peculiar behaviour. If we 
calculate the diffusion coefficient ~ K O U I  t,he slope of t,lle inem square displacement a t  a 
longer time, we get a result that  is lower tliali that. obt.ained for shorter times. This is 
most prominent a t  densities of 0.7 to  0.8. but also for lower densit,ies we find systematic 
deviations. This serves as an argument to crit.ically examine the existence of diffusion 
for this model, defined through the second moment of the probability distribution [22]. 
10 ~irvesugaae b i i i s  ques~iori i n  more uei,aii, vile could look ai i,he kuriosis, which is 
defined as [40) 
m.: L:-.L. 2L:. ..~-.A!.~~ . ~~~~~~~ ~ , ~ . ~ I ,  

If the probability distribation for t!?e !~!oving !~artirles is Gaossia!?, the second mo- 
ment exists, and the kurtosis vanishes. Simulat,ions carried out, for the chiral model, 
however, show a kurtosis that  increases from zero a t  low densities to  values of order 
one for high densities, a we show i n  figure G.  A similar dependence of the kurtosis 
on the density of scatterers was found for t,lie mirror model [21,22]. The deviation of 
the radial probability distribution from a Gaussian ~ O K I I I  is argued to  come from the 
contribution of relatively short closed orbits. \\’e did not. investigat,e the behaviour of 
higher moments. 

Regarding these deviations froin t,lie Gaussian forin, some remarks can be made 
concerning the definition of diffusiou. Fro111 h e  usual  diffusion equation, Fick’s law, 
follows that the probability distributioii hits tlie Gaussian Corm, thus giving the depen- 
dence on time of all the moments of [.lie dist,ribiit,ion. The secoud moment then grows 
linearly with time! with a proportionality coelficient t.liat is defined as the diffusion 
coefficient. However, if the dynamics caii uot, l i e  described by a Markov process, it 
may be different. It could he that the second inoiiieiit grows linearly with time, thus 
allowing the choice of a proportionality coeffcieiit,, but that the higher niomeuts do 
not satisfy the form of a Gaussiair distribution. It then becomes questionable, from 
some point of view, if one should use the term ‘diffusiou’ a t  all. In the present paper, 
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Figure 5. C h i d  model for D = 0 and yL = yR = fc. Simulslion results for several 
valuer of time t. 
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Figure 6 .  Kurtosis for llie diiral nmdd u,ilh yL = yR = 1.. 

however, we conveniently define the (t ime dependent) diffusion coefficient D ( t )  to he 
proportional to the time derivative of the secoiid moment or mean square displace- 
ment: D(1) = f & ( z 2 ) .  

For the case tha t  there is an excess of left- or right-turners (yL # yR), the EMA 
predicts a phase transition, even if the densities differ only slightly from i c .  This is 
seen in figure 7 for a typical set of parameters. These findings are in agreement with 
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the phase diagram of the  chiral model where the complete phase space of parameters 
a, @,yL, yR and c is studied [22,26]. However, also this transition is only a qualitative 
result: simulations show a threshold that is lower than the EMA threshold. Again, i t  
seems tha t  simulating longer times yields lower results for the diffusion coefficient. 
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Figure 7. Chiral model with 0 = 0 and T~ # yR. Note: SRA and SRRA,  only up to 
e 2 0.4. are  hidden in other curves. Siriiuliirion results for several values of time t .  

Finally, we present some results for the case when the density p of backscatterers 
is non-zero. According to [19,26], the simulations refer to a region of extended orbits 
in the 'phase diagram' of the parameters {CY,,!?}. There diffusioii may occur. Some 
cases are presented in figure 8, where one can see that the EMA for these models 
yields a rather unexpected result: for larger densities c, the EMA diffusion coefficient 
is higher than the values (4.3) predict.ed by the Boltzniann equation. For short times 
( t  = 200) and low densities of scatterers, the simulations more or less agree with the 
EMA, and deviate significantly from Bolt~sniann. confirming our expectation tha t  the 
Boltzmann equation breaks down i n  presence of bacliscat,tering. A t  higher densities 
the EMA breaks down as a description of the da ta .  This illust,rat.es tha t  the EMA is 
essentially a low-density theory, as it was also the case for the percolatioil models 
(29-341. Only for the stochastic lattice Lorent,z gas does the EMA also yield exact 
results for the completely filled lattice [9]. Here, tlie full lat,tice still has the disorder 
of different scatterers. 

For simulations tha t  run over longer t,imes, t,he diffusion coefficieiit D ( t )  E p t ( x * )  
decreases! This can not be explained by E ~ ! A  or other siiiiple kinetic theories. Physi- 
cally it is clear what is going 011: more a n d  more part,iclcs find t.lieniselve:s trapped in 
closed orbits and  do not contribute t,o D ( t ) .  

It  might be possible tha t  we did not find the right. braiicli of the solution of the 
coupled equations. However, by varying the st,artiiig points we did not find (other) 
physically relevant solutions. T h e  simulations performed for the set of parameters 
used for figure 8 show the  same effect,s that, we also observed for the other cases 
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Figure 8 .  Chiral model with 0 f U and yL = yK. Simulation results for several 
value of time t .  

discussed before (see figures 3, 5 and 7 ) :  the longer w e  silniilate, t,he lower the diffusion 
coefficient. 

We conclude with some filial remarks. First. the cliiral model is a model to which 
the effective medium approximation can be applied in a straight,forward manner. The 
resuits are expected to  be reievant For long i.iiiies in cases where diihsion, defined 
in terms of the mean square displacement, exists. This is, liowcver, not the case for 
all choices for the parameters. Second, the models without backscattering are more 
likely to  show diffusive behaviour that1 those with backscattering. Third, in the chiral 
model deviations from the simulation results are observed, contrary to  the stochastic 
model [9]. It is likely that these incorrect predictions b y  EMA and ring-type kinetic 
equaiions are caused by the oiniwoii of, for iiisi,aiiie, ilie orbit,ing coilision seque;nces 
(see figure Z(c)), which account for the periodic orbits in deterministic models, as 
pointed out in the introduction. Moreover, these traject,ories are also fully responsible 
for the phase space to  he split up i n  separat,e parts, and tlins' breaking ergodicity. 
Fourthly, however, from analyzing t,lie d a h  froni computer si~iiulations, one is more 
and more tempted to question if the model does liave diffusive heliaviour at all, even 
in the regions of extended orbit,s [19,2G]. 

. .  
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